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Quadrupolar [14](meta-para);Heterophanes and [14]metaHeterophanes Containing Stable
3,5-Bis[1-methyl-4(3)-pyridiniomethyl]-1,2,4-triazolate Building Block
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Access to novel quadrupolar [14] (meta-para)2azolophane with
a 3,5-bis[1-methyl-4-pyridiniomethyl]-1,2,4-triazolate subunit
reveals that the structural features conferred by the heterophane
architecture lead to molecules that are stable to oxidation, in
contrast with their building block. The stability of
[14]metaazolophanes is consistent with the betainic subunits.

A concurrent apphcatlon of the areno-analogy pr1nc1p1e1 and the
captodative effect2 has been exemplified for several examples of
1-alkyl-4(3)-(1H-azolyl)pyridinium salts 1. 3 Accordingly, the
character of the non-classical acceptor and donor heteroaromatic
moieties modifies the proclivity of the captodative methylene
spacer to spontaneous oxidation to the oxomethyl analogues 2.
However, the quaternary pyridinium salts with a 1H-1,2,4-
triazol-3(5)-yl group 3 and 4 have displayed distinct behaviour;
hence, air oxidation was sufficient for transformation of
compound 3 (R=Me) into the corresponding oxomethyl
derivative of type 2, whereas compound 4 (R=Me) turned out to
be very stable,3 as was the corresponding inner salt 5 (R=Me).4
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These results prompted us to expand this work towards more
elaborate heteropolyaromatic substrates such as the quadrupolar
[14] (meta-para)2heterophane 6 and [14]metaheterophane 7,
together with their immediate precursors 8 and 9.

[14]Heterophanes 8 and 9 were obtained in good yields by
macrocyclization of the protophanes 14 and 15 with 3,5-
bis(chloromethyl)-1H-1,2,4-triazole 169 (Scheme 1). The
intermediates 14 and 15 were prepared by a standard two-step
procedure, starting from ethyl 4(3)-pyridylacetates 10 and 11.

The key macrocycle 9 was then converted into the corresponding
quadrupolar [14]heterophane 7 using an anion-exchange resin
(OH~ form),10 whereas the insolubility of 8-2Cl in alcohols
and/or water precluded its transformation into the quadrupolar
[14] (meta-para)pheterophane 6 (Scheme 2).

An alternative route to the targeted heterophane 6 was then
explored1 1 (Scheme 2), starting with condensation of protophane
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8,14,12,10: 4- pyrldyl(pyridinio)
9, 15, 13, 11 : 3-pyridyl(pyridinio)

Scheme 1. Reagents and conditions: (A) 12: NH2NH2-H20,
6h at 100 °C, 5 d at 150 ©C, 2 h at 165 °C (75%);
13: NH7pNH?2-H20, 6 h at 100 ©C, 8 d at 140 ©C, 3 h at 165 °C
(85%); (B) 14: (i) NaNO2, HCI 3N, H20, 0 °C to r.t., 45 m.
(i) NagCO3 to pH 8 (68%); 15: (i) NaNO2, HC1 3N, H20,
090C to rt., 1 h. (ii) NapCO3 to pH 8 (84%);
(C) 8: dry CH3CN, reflux, 48 h (45%); 9: dry CH3CN,
reflux, 24 h (60%).

14 with the 1-diphenylmethyl-3,5-bis(chloromethyl)-1H-1,2,4-
triazole 17.8¢

The structures of the new compounds were unambiguously
characterized on the basis of their IR and 1H NMR.1Z For all
[14]azolophanes reported, the IH NMR spectra (22 °C) in D20 at
300 MHz showed two different singlets for the methylene proton
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Scheme 2. Reagents and conditions: (A) IRA-401 (OH~ form)
(>80%); (B) Dry CH3CN, reflux (13%); (C) TFA, phenol, reflux
(82%).

atoms. Comparison of the chemical proton shifts of quadrupolar
macrocycles 6, 7 with those of their corresponding precursors
8. 9 reveals that the 8H values of the methylene spacers are
some of the most affected; they shift to lower frequencies (see
ASH),13 providing evidence of charge distribution within the
quadrupolar system.

In contrast to the building block of type 3,32 the quadrupolar
[14] (meta-para)sheterophane 6 and its precursor 8 turned out to
be very stable in air, whereas the stability of
[14])metaheterophanes 7 and 9 was predictable since no
atmospheric oxidation was observed for betainic counterparts 5.4
Whatever the structural features that prevent oxidation may be, the
[14]heterophane framework modulates the susceptibility to
oxidation and permits access to the hitherto unknown stable
quadrupolar title molecules 6 and 7.
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Debenzhydrylation of compound 18 seems to be the method of choice for
obtention of macrocycle 8:2CF3C02, which is more soluble in
alcohol/water than the corresponding chloride 8:2Cl, and can thus be
transformed into the quadrupolar compound 6.
Data are quoted for the macrocycles 6-9. They melt at higher temperatures
than their corresponding protophanes. Unfortunately, it was not possible
to obtain single crystals of [14]azolophanes 6-9 suitable for X-ray
structure analysis.
Compound 6: mp > 350 °C. 1H NMR (300 MHz, D70, 22 °C):
8 =3.95 (4H, s, CHy-12,17), 5.49 (4H, s, CH-2,7), 7.40 (4H, d,
J=6.9 Hz, CH-10,19), 8.22 (4H, d, J = 6.9 Hz, CH-9,20).
Compound 8-2CF3CO2: mp 267 °C. IH NMR (300 MHz, D;0,
22 9C): & = 4.18 (4H, s, CH»-12,17), 5.75 (4H, s, CH2-2,7), 7.61 (4H,
d, J = 6.9 Hz, CH-10,19), 8.49 (4H, d, J = 6.9 Hz, CH-9,20).
Compound 7: mp > 325 °C. IH NMR (300 MHz, D0, 22 °C):
8 =4.00 (4H, s, CH»-13,18), 5.55 (4H, s, CHp-2,7), 7.78 (2H, s,
H-23,25), 7.81 (2H, dd, J = 6.2, 8.0 Hz, CH-10,21), 8.29 (2H, d, J =8.0
Hz, CH-11,20), 8.65 (2H, d, J = 6.2 Hz, CH-9,22).
Compound 9-2Cl: mp > 325 °C. 1H NMR (300 MHz, D0,
22 0C): § = 421 (4H, s, CHp-13,18), 5.77 (4H, s, CHp-2,7), 7.89 (2H,
dd, J=5.9, 7.5 Hz, CH-10,21), 8.40 (2H, d, J = 7.5 Hz, CH-11,20), 8.49
(2H, s, CH-23,25), 8.73 (2H, d, J = 5.9 Hz, CH-9,22).
The differences in proton chemical shifts in D20 between the quadrupolar
macrocycle 6 and its corresponding macrocyclic precursor 8 were found to
be A8 CH) ca. -0.24 ppm, Ad H-10,19 = ~0.21 ppm and Ad H-9,20 =
—~0.27 ppm. For compounds pair 7 and 9 the higher chemical shift
difference was found to be A8 H-23,25 =-0.71



